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Abstract We derive a generalintion of the prolongntioo formula for tensor-valued functions, by 
taking into account the naNral action of diffeomorphisms on leasor fields. This differs tiom the 
usual procedure, where such fields are viewed as defining 'multi-component scalars'; it replaces 
the ordinary derivative in the expression of the 'characteristic' by a Lie derivative. The resulting 
version of Noether's theorem mkes a form more familiar to theoretical physicists. A very simple 
proof of the conformal invariance of the Maxwell Lagrangian also follows from this procedure. 
The Eshelby tensor is also readily obtained, as a further illustration of the practical w e  of this 
new prolongation formula. 

1. Introduction 

Lie (1881), in his study of symmehies of differential equations, introduced the prolongation 
of the infinitesimal generator of a symmetry, which expresses the infinitesimal variation of 
the unknown function and its derivatives, under the group action. Noether (1918) applied 
this procedure to the variation of integrals, and established, in a very general framework, 
the connection between the invariance group of an integral and the conservation laws of 
the associated Euler-Lagrange equations. The more general case, when the first variation 
of the Lagrangian is a divergence (divergence symmetries), was studied by Bessel-Hagen 
(1921). 

Only later was the prolongation method used in a systematic way to classify symmetries 
of large numbers of equations (Ovsiannikov 1962, Bluman and Cole 1974, Ibragimov 1975); 
the procedure was streamlined in the process, by the introduction of a simple closed- 
form expression for the nth prolongation, which is referred to as the prolongation formula 
(see Olver (1986) ch 2, where one can also find other historical remarks). The modern 
presentation of the prolongation (Olver 1979) is as follows. 

For a differential equation in n independent variables and one scalar dependent variable 
U, we consider the space X x U 3 ( x ,  U), where X = R" and U = R, or an open set 
thereof, on which a group generated by 

a 
U = t i a j  + cp- 

a u  

acts locally. This group defines a natural transformation on functions U = u ( x )  and their 
derivatives. The information is summarized into prolonged vector fields 
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k = I, 2, . . , , which can be viewed as vector fields on the jet spaces J‘(X: U). For systems, 
one repeats the operation on each dependent variable, treated as a scalar. This version of 
prolongation has since then been applied to the determination of symmetries of differential 
equations, the computation of finite-dimensional reductions (classical and ‘non-classical’ 
(see Olver (1993)) and the formation of conservation laws, to name a few. 

Conservation l a w  constructed in this manner are particularly useful in the proof of 
global bounds on solutions of nonlinear partial differential equations (PDE), and in the study 
of cracks in elastic materials. In particular, the procedure provides an explanation for 
the ‘multiplier’ introduced empirically to derive conservation laws from Euler-Lagrange 
equations in terms of the ‘characteristic’ rp - { i u , i  of the symmetry. 

With the development of field theories, many simplified accounts introduced weakened 
forms of Noether’s results: see, for example, Hill (1951), Gel’fand and Fomin (1963). 
Schmutzer (1968), Edelen (1969), Anderson (1973) and Logan (1977). The last reference 
gives an elementary treatment of Noether’s theorems which does not rely on the fundamental 
variational formula but instead uses a set of invariance identities obtained through the use 
of Euler’s equations in the variation (see also Lovelock and Rund (1975)). One should 
also note that these simplified accounts, limited to Noether’s theorems, did not lead to the 
important development in group-theoretic methods in PDE made possible by the prolongation 
method in the last 20 years. The case when the dependent variable is a tensor was handled 
essentially in three different ways. 

(i) By treating each component as a scalar-valued function. This amounts to fixing, once 
and for all, a local trivialization of the tensor bundle under consideration. In this framework, 
we usually recover conservation laws with a simple physical interpretation only as a linear 
combination of those corresponding to groups acting on the independent variables alone and 
those acting on the dependent variables alone (see, for example, Ibragimov (1985)). 

(ii) By breaking up the total variation of the dependent variables into the sum of ‘small 
variations’, i.e. into (a) variation of the point x ;  @) variation of the dependent variable: 
and (c) variation of ‘local frames’ (Bogoliubov and Shirkov 1959, Schmutzer 1968, Edelen 
1969, among others). Bogoliubov and Shirkov (1959) and Schmutzer (1968) also contain 
material on spinors. The variation of local frames was also used in some cases by Ibragimov 
(1985) and Fushchich etal (1987, 1993) in conjunction with method (i). 

(iii) By equating (rather than adding) two expressions for the variation of the Lagrangian, 
one due to the integrand being a scalar density, and the other due to the variation of the 
dependent variables by the group action (see Goldberg (1953), Fletcher (1960) and Anderson 
(1967)). 

However, these developments call for the following commments, 
(a) It is well known that, while the first-order derivatives of a function define acovariant 

vector, there is no intrinsic meaning to higher derivatives. Thus, the Hessian has an 
invariant meaning only at critical points (which makes Morse theory possible). This is 
generally obviated by introducing jet spaces. However, jet spaces are not designed to give 
an invariant meaning to individual derivatives-only to the notion of order of contact. In a 
vector bundle, the situation is even worse, since it is not clear how to differentiate sections 
even once in the absence of a connection. Even with a connection, the commutation of 
derivatives is lost in general. 

(b) If the part of the variation of a tensorial quantity due to the variation of ‘local 
frames’ may be explained in concrete terms by the ‘dragging’ of coordinates, one would 
like to have a systematic way of computing these terms, and of incorporating them into the 
prolongation formula, to recover the ease of use of the latter. especially for higher-order 
Lagrangians. 
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(c) One would like to explain why procedure (iii) is successful in yielding the correct 
conservation laws. 

Now, we will see that in a tensor bundle one can, despite point (a) above. define the first 
variation by pull-back and compute an intrinsic prolongation formula, provided one modifies 
the definition of the characteristic. This is due to the fact that any action on the base of a 
tensor bundle can be lifted to the full bundle in a definite way, as we show in section 2. In 
terms of jet bundles, one must compute the k-jet extension of the transformation on sections 
of Iensor bundles induced by the group, rather than on sections of a product bundle X x U. 
The translation in local coordinates is given in section 3, where the prolongation formula 
for tensors is stated and proved. To illustrate the practical application of this formalism, 
we discuss conservation laws for three-dimensional elasticity and for Maxwell's equations 
in section 4. obtaining, in particular, a very simple proof of the conformal invariance of 
the latter. A more general classification of conservation laws for electromagnetism will be 
discussed elsewhere. 

2. Group actions on tensor bundles 

We develop a few abstract results on group actions on tensor bundles. Their expression in 
local coordinates is given in this section and the next. 

The material of the first two paragraphs of this section actually extends to a quite general 
vector bundle, while the second uses the fact that an invertible map on the base of a tensor 
bundle has a natural lift as a bundle map. 

2.1. 

Consider a smooth vector bundle ( E ,  B ,  n) and a group G acting on E .  Note that the 
elements of G are not bundle transformations: they do not map fibres to fibres in general. 
We may, for simplicity, assume that G is a one-parameter group. As usual, B is the base 
and x is the projection from E onto it. Two examples are relevant for our applications. 

Example I :  Product bundle. 
projection is 

Let B be an open subset of R" and let E = B x RP. The 

7r : ( X I , .  , , , x n ;  U1 ,..,U') H ( X I , .  . . , x " ) .  

A section of E defines a 'multi-scalar' function U = U@): 

s : ( X I , .  . ..I") H ( X I ,  ... , x " ;  u I ( x ) .  . . , UP@)), 
Example 2: Tensor bundle. B is taken to be R" (or any n-dimensional manifold) and E is 
a tensor bundle on it; local coordinates on B will have the form ( X I ,  . . . , x " ) ,  while those 
on E have the form 

. .  
(W); (U;,';::::$ 

where all indices take all possible values from 1 to n. Sections of this bundle define tensor 
fields on B ,  of type ( p .  9). It will often be convenient to abbreviate these coordinates to 
( x i ,  U'), where I stands for all tensor indices, covariant or contravariant. The summation 
convention will be used throughout the paper. Note that a tensor field U' = u ' ( x )  is 
identified with the section 

s : ( x i )  H (2; u ' ( x ) )  

The projection has locally the form n(x ' ;  U ' )  = ( x ' ) ,  



7860 S Kichenasamy 

Example 1 leads to the usual prolongation formula, and example 2 to the one derived 

We keep the presentation at this more abstract level in this section since the procedure 
in section 3. 

is also potentially applicable to principal bundles as well. 

2.2. 

We wish to study the induced action of elements of G close to the identity on sections of 
E. In practice, it will be enough that the action be defined in the neighbourhood of the 
fibre above some point of the base. 

Therefore, let g E G be close to the identity. Let us also fix a section s : B + E (so 
that, by definition, i~ o s  = id)t. It defines an action f on the base, and an induced section 
s', which make the following diagram commutative: 

More precisely, 

f = a o g o s  : B -+ B x ++ x ' (x ,g ) .  (1) 

Since g is close to the identity, this map is invertible. (Again, the inverse may only be locally 
defined in the applications.) Now define the induced section s ' (x ' ) ,  so that s' o f = g os: 

2.3. 

The passage from s to s' expresses the action of the group on E-valued fields on B ;  it has 
been described in an entirely coordinate-free manner, 

Let us now turn to the problem of defining the prolongation of the group action. Since 
we have a map s H s' from sections of E to sections of E. there is a natural k-jet extension 
for every k, which maps sections of ] ' (E)  to sections of ] ' ( E ) ;  the prolongation formula 
will describe this map at the infinitesimal level, 

We therefore need to be able to compute 'derivatives of s with respect to group 
parameters'. It is, however, not possible to differentiate s with respect to group parameters 
in the obvious way because we cannot subtract vectors attached to different points of the 
base. In example I, this difficulty disappears, because there is a canonical identification of 
all the fibres at different points. For example 2, E is no longer a product bundle: we may 
not identify all fibres with one another ~ p r i u r i ,  and another procedure is needed. 

t Olver (1979) also considers sections with 'vertical tangenls'. but we limit ourselves to a more familiar sct-up. 
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2.4. 

We now limit ourselves to example 2 and show how to define the infinitesimal group 
action intrinsically. In that case, f is a diffeomorphism of B and, therefore, induces a 
transformation on tensors of any type. It therefore induces, in particular, a bundle map 
('push-forward') F : E + E .  If we compose g with F-I ,  we obtain a map which acts as 
the identity on the base, but which reflects the group action on the fibre. Comparing it with 
the identity, we obtain a measure of the variation in the section: 

6s = [F-' o g - id] o s  

= F-1 0 s' 0 f - s. 

Assume now that g = g,, where E is the group parameter. To any section s, we 
associate, as  above, a new section s:, and maps fe and Fe. The infinitesimal action of g, 
on E is, of course, represented by a vector field tangent to E ,  but it can also be represented 
more concretely, i f s  is given, by 

d 
d s  
- x ' ( x ,  U ,  E) 

and 

d 
-F;'osfof, 
de 

both evaluated at E = 0. Indeed, the first is a vector field on B ,  while the second can be 
identified with a tensor field. 

The role of F;' is to bring the point x' back to x so that we may always compare 
tensors attached to the same point, which should be independent of E. The derivative of 6s 
with respect to E at E = 0 is a well defined section. 

This is reminiscent of the procedure used in the construction of the Lie derivative. 
The various mappings involved are now summarized in the following diagram. 

E A E  

2.5. 

We now give the expression for g, f, F and 6s i n  local coordinates. 
Pick a coordinate system [ x ' )  on B ;  it induces a local field of natural frames and 

coframes: ( 8 / 8 x ' )  and {hi], and more generally, by tensor product of these, fields [e,] 
which form a basis for ( p .  q)-tensors on B.  The generic element of E is therefore 
represented by 

I 
( x ' ;  U) where u = u e , .  

The action of g is then represented by 

( x i ;  U ' )  H ( x " ;  U") .  
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Let us now choose a section s of E: .s : x H ( x ,  u ( x ) ) .  It defines a mapping f from E to 
itself: 

f : ( X I ,  . . . , x " )  H ( x ' l ,  . . . .x '" ) .  

The { x ' j ]  also induce new frames and coframes: [a/ax") and {dx"]. There is again a 
corresponding basis for tensors, which we call {e;,) .  

We view f now as a local diffeomorphism, 
The mapping F describes the transformation of tensor components under this 

diffeomorphism. To describe it explicitly, we introduce I-forms dx". . , , ,dx"' by 

axil ax* 
a x ,  ax j  dx" = -dxJ, . . .dx"' = --dX'. 

We then have 

F ( x ,  dx") = (x' ,  dx"). 

Note that in this equation one should think of dx" as an element of T:B ('attached at x') 
while dx" lives in T;B (and is therefore 'attached at x").  

Similarly, 

F ( x ,  dx') = ( x ' ,  -dx" 2 ) . 
For vector fields, we define analogously a,,, . . . , a,. by 

a d  a ax' a 
, . ._,  am, = --. 

axin ax, 
a,, = 

We then have 

Finally, general tensors can be expressed in either basis: 

I ' ,  - I U = U e,. - U  e,  

and 

while 

( x ,  u"e1) = ~ - ' ( x ' .  ufr'e;,). 

More explicitly, 
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We then find 

& ( x )  = ( x .  (U" - u')e, ) .  

Remark. The operation whereby dx" is brought back from x' to x (by F )  has been 
interpreted in  earlier works as 'dragging from one point to another'. It consists of the 
identification of dx", which is viewed as belonging to the cotangent space above x ' ,  with 
( a x f i j a x j ) a x j ,  a combination of the basis elements of the cotangent space at x .  Similarly, 
F 'drags' d i e l  back to x .  This is made possible by the fact that the charts [ x ' )  and [ x ' ~ )  
overlap and, therefore, the local fields of forms associated with [ x ' )  are also defined in the 
vicinity of x ' ,  and can be used to represent tensors attached at X I .  and vice versa. The usual 
pull-back is, in this framework, a combination of (i) the chain rule and (ii) dragging. It is 
convenient to assume that F is the identity and write 

and we will often do so, 

2.6. 

One may also argue in  the following way. From the expression of the Lie derivative 
Lxs' of s' with respect to an arbitrary vector field X on the base B (unrelated to the 
group generators), one can find all the first-order derivatives of s' and, therefore, the first 
prolongation. Higher derivatives can be computed from the action of several successive Lie 
derivatives on s'. Expressing these in local coordinates i n  two different ways will lead in 
the next section to a second proof of the prolongation formula; i t  is also noteworthy that 
there is a completely intrinsic way of computing the prolongation using Lie derivatives. 

3. Expression of the prolongation in local coordinates 

We translate, in local coordinates, the construction of the prolongation in the previous 
section. 

All calculations are carried out for a one-parameter group and are always local. Dots in 
formulae (. . .) indicate terms of second or higher order in Taylor expansions with respect 
to the group parameter E .  The general prolongation formula will differ from the usual one 
only in the form of the characteristic. 

Let I stand for an arbitrary set of indices (up, down or both), corresponding to the type 
of tensors under consideration. We also write D, for Dj, . . . D ,,,, if J = ( j r ,  . . . jq) .  Dj 
stands for the total derivative with respect to 1'. We denote by [JI the length of the multi- 
index J ,  i.e. the number of its components: [ ( j , ,  . . , , j,)l = q. The rest of the notation is 
as in section 2. The group action has the form 

Since we are given a relation U = u ( x ) ,  the first line defines a point transformation. It will 
enable us to define new components U'". The goal is to express the derivatives of U'" with 
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respect to the XI, and to compute the linear term in their Taylor expansion near E = 0. The 
result is the prolongation formula. 

This task is broken up in two parts: first, one must compute U'"; next, one must compute 
its successive derivatives, 

We deal with the first task, on vectors and covectors. from which the case of general 
tensors is easy to describe. We then state and prove the prolongation formula by induction 
on the number of derivatives. 

3.1. Covectors 

We are interested here in the case E = T'R". 

induces a point transformation x H x'. 
A section is now a 1-form U = U, dx". Since U is given as a function of x ,  the group 

In local coordinates, we  therefore write the group action infinitesimally: 

x'i = x i  + &Ci(X, U) + . . . 
U: = U" + &&(X.  U) + 1 . .  

(6) 

(7)  

where i and n run from 1 to n. Substituting U = u(x) .  we obtain the point transformation 
x H x': 

x'i = x " ( X , u ( X ) . & )  

and the transformed function u'(x')  obtained by eliminating x between (6) and (7). 
Now, using the notation of section 2.5, 

dx'" = (8; + &$@,b + . .) dXh (8) 

and 

dxU = (6; - &(',b + , .) dx" (9) 

where the comma denotes a roral derivative; as is commonly performed, we will at times 
write D&' instead of BO,,, to emphasize this. 

One can now express U' in two ways: 

U' = U: dx" = U:, dx'"(= U:, dx"). 

Denoting by C4 the Lie derivative in  the direction t i& ,  we find 

This is the desired formula. 
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3.2. Vectors 

Let E = T R " .  A section is now a vector field U = U"&. From considerations similar to 
those developed before, we see that the group action can be written 

x'i = x i  +&.$ ' (X ,  U) + . . . 
U'U = UU + & @ ( X .  U) + ,  . . . 

(1 1) 

(12) 

Given U ,  this again defines a point transformation. Again, U' can be written in two different 
ways: 

= a, = a+ 

where 

since ah = (8; + +',h + . . .)ao, 

3.3. General tensors 

The expression of U' in terms of x' now takes the form 

U'!' = U1 + & [ @ I  - ( & ) I  + 5*U'.hl  +.. . (14) 

by an argument similar to that of subsection 3.1 and 3.2. 

Remark. One may recover, from the factor of E in (14), the total variation computed by 
method (ii) (see section 1) in the treatments of conservation laws in Bogoliubov and Shirkov 
(1959), Edelen (1969), Fushchich and Nikitin (1987), Fushchich et al (1993), Ibragimov 
(1985) and Schmutzer (1968) and recognize its geometrical origin. 

By analogy with the scalar case, we define the charucterisric to be 

id. (1.5) c I = & ( L  

Note that C1 does transform like a tensor. For multi-component scalars, one should 
replace the Lie derivative by an ordinary derivative. This has the effect of making the 
two expressions of U' (namely U"' and 11") identical, as it should be. The present formalism 
then reduces exactly to the usual one. 

3.4. Prolongation 

The prolongation formula gives the infinitesimal variation of the derivatives Dpu'I' under 
the group action, where I' and K' are multi-indices. It will be convenient to use the 
convention that if the length of K is zero, then DKU' = U'. 

For the usual procedure, and many applications, see Olver (1979, 1986) and Ibragimov 
(1985). 

The main result of this section is the following theorem. 



7866 S Kichenassamy 

Theorem 1. The prolongation formula for tensors reads: 

D/,U"=DIU'+&[D/C'+FhU' , /h l+. . .  . 

In other words, if 

we have 

Proof. We already know from (14) that this formula is correct for derivatives of order 0. 
For the sake of clarity, let us write out the case of one derivative for a contravariant vector: 
the general case is treated next. Using (13) to compute U'", we find 

Dk'U''' = (8; - & c h , k +  ~ . ~ ) D h ( U " + E [ ~ ' + $ ' , h U b ]  

= D k U Y  + E [ @ , k  + Dk(Fu.blLb)- t h , k U ; h ] +  ' ' '  

= D k U "  + &[Dx(qhy 4- c'.hUh - $ h D h U u )  + <"DakU']  + ' "  

= &U" + & [ & C O  4- t h D h U U , k ]  + ' ' ' 
with C" = 4" - (Leu)'. We now prove the general formula by induction on the number 
of derivatives, i.e. on the length of the multi-index 111. The case when 111 = 0 is given by 
(14). 

Let us assume (16) for some I ,  and let us compute D h s r d " :  

Dh,pU''' = D h , ( D p U ' ' ' )  

= (8: - S ( ' , h  + .'.)Dj(DlU' +E(DIC' + < ' D k U ' , I )  + "') 

= DhlU'  + & ( D h l C '  + D h ( t k D k U ' , i )  - ~ ' , r , ~ j U ' , ~ )  +... 
= DhlU'  + & ( D h / C '  + t k D k U ' l h )  + '.. . U 

From a strictly computational view-point, this amounts to changing the definition of the 
characteristic given in  Olver (1986), by adding a term to 4'. One can compare the result 
of theorem I with procedure (i) of section 1: if U is treated as a multi-scalar, and its vector 
nature is not taken into account, it will show in the non-invariance of the equations under 
natural transformations (such as rotations, for instance). One will be led to compensate for 
this by adding a term to 4'. We have a systematic procedure for finding this term: it is 
the difference :'a,u' - (Ltu)'.  It is, however, difficult to explain this procedure and to 
make it systematic without the help of geometric ideas. At any rate, equations which failed 
to be invariant when their unknowns were viewed as scalars will now have their natural 
invariance properties. 

It should also be pointed out that since there is no restriction on the choice of q5/ and c h ,  the present procedure has the same level of generality as the usual one. 
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3.5. An alternative method 

There is a more invariant, albeit more complicated, method of deriving this prolongation 
formula. We present it only for the first derivative of a covariant vector, for the sake of 
simplicity. 

Let X be a vector field, which is quite unrelated to the group generator. It can be 
expressed in two ways: 

x = xuao = x’‘a...  

Let us compute, in particular, the Lie derivative Cxu‘ in the primed variables in two different 
ways, and show how to deduce from this the expression for the first prolongation. For the 
rest of this section, we make all calculations modulo sZ and, consequently, omit the . . . . 
Method I .  We start from the relation 

Lxu‘ = c x u  + & C X @ .  

(Lxu‘)“, = (CXU’)h(G,h - E t U d  
This shows that 

= (LXu)a + &[ (L :X@)a  - ~ “ . h ( L X u ) h l .  

The linear term in E in the above reads 

(17) h x @d,h + Xb,a@h - t b o ( X c U h , c  + X C , h u c ) .  

Method 2 .  
involve the first prolongation &, (without comma), which satisfies 

We may also compute LXU’ directly in the primed coordinates. This will 

dy~, ,  = %b + &@ob. 

Equating the results will enable us to compute @ah. 

Let u s  first note that 

xb< = X h  f &<b,”XU 

and 
x h ’ , , ,  = (8: - & t E , . ) a c ( x b  + & & x K )  

X h , a  + d 6 h , a k X k  - t C , u X h . c  f < b . k X k , u l .  

Now, 
(LXU’),, = x”u;.,,, + Xb’, , ,Ui ,  

= ( X b  f & e b . m X m ) ( U u , b  +&@ah) 

+ ( X b , u  + & [ t h , o k X k  - ~ ‘ , O X h , c  + < h , k X k , a I ) ( u h  + &(@h - tc,buc)).  

The linear term in E in this expression is now 

(18) h h x @ab + < ,m’&,hXm + X ’ , u ( @ b  - h c , h U e )  + u h [ $ h , u k X k  - t C . o X h , c  + $ h . k X k , u l .  

Equating (17) and ( IS )  gives 

Xbl’$oh - Dh[$% - tCuv - tC,ouc1 + tcuu,bc)  = O. 
Since X” is arbitrary, we recover 

@ub = DbCo f V ~ O , L X  
which is, as it should be, identical to the result of theorem I .  
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4. Applications 

After defining the notion of variational symmetry in this set-up, we prove the corresponding 
version of Noether’s theorem for Lagrangians of any order. We then specialize to the 
case of first-order Lagrangians where the dependent variable is a covector. We then treat 
two examples in detail: Maxwell’s equations in Minkowski space and the equations of 
three-dimensional eiastostatics, We refrain from giving here a treatment of ordinary and 
generalized symmetries of equations without a variational structure. We also do not attempt 
any classification of variational symmetries since our aim is simply to illustrate the present 
procedure. 

4.1. Variational symmetries 

We consider a Lagrangian of order m: 

J L(X, A J , A ~ , ~ ,  . . .)dx 

where A’ is a tensor of arbitrary type (recall that 1 stands for a collection of indices which 
may be up, down or in mixed positions): L is a scalar formed with the derivatives of A up 
to order m. We say that 

U := p a r  -!- $ l a A ,  

generates a variational symmetry of this Lagrangian if 

prp’(L) + L D & ~  = o 
where we have, from theorem 1, 

‘.I 

L” := aLiaA:J 

and C’ is the characteristic. This invariance condition can be written in a more compact 
form using the total derivative 

The above sum includes the term E, L I C ‘ ,  corresponding to IJI = 0. Note also that the 
Euler-Lagrange equations take the form 

This sum is always finite, since the Lagrangian depends on finitely many derivatives of A’. 
The same will be true of the other sums below. We have explicitly written the summation 
operator at times, for added clarity, although all formulae are consistent with the summation 
convention. Also, capital letters (H. I, K )  refer to multi-indices. 
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4.2. Conservation laws 

We now prove a version of Noether's theorem for one-parameter groups for the present 
set-up. 

Theorem 2. The identity 

C'El+DjP '=O 

where 

Pj = L p  + -y(-l)'KIC',HL,jHK,K 
H.K 

holds identically. 

Remark, In particular, if the Euler equations hold, we have the conservation law 

Dj Pj  = 0. 

Identity (20) is, however, still true, even if A' is not a solution. This has been very useful 
(cf, for instance, the 'Pohoxhaev identity' for solutions of nonlinear elliptic equations). 

ProoJ The proof is a direct calculation (summation over I is understood in all formulae): 

= - Dh(L(") - C'EI 

Note that we, have used the symmetry criterion in the last step, 

4.3. First-order Lagrangians 

We now write out the results for first-order Lagrangians of the form 

L = L(&,j). 

We let L"& = aL/aA,,k and give the explicit form of the invariance criterion and the 
corresponding conservation laws. 

The criterion for ['ai + &a/aA, to generate a variational symmetry reads: 

LDhth + L"'(@U,k - eh. t&,h - t h . d h , k  - fh,ukAh) = 0 
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since 

CO = h - chAa.h -&Ah. 

If this condition is satisfied, we obtain the conservation law 

a iP i  = o 

with 

P' = L t J  + CO LUj 

where C. is the characteristic given above. (This would also be the form of the conservation 
law for the most general first-order Lagrangian.) If q5# = 0, this reduces to 

P' = LE' - ( L ( A " ) L ~ ~ ,  

This last conservation law is sometimes justified without the use of prolongation (on scalars 
or vectors) as follows. The invariance of the Lagrangian is expressed by equating the 
variation consecutive to the change in the dependent variables induced by the group action, 
with the variation of the Lagrangian scalar density (i.e. with Di(L t i ) ) .  This gives 

Dj(Lc' )  = E'(LtAA,) + D~[(LC~A,)L''I.  (21) 

Remarkably enough, taking into account the Euler equations E" = 0. this is precisely the 
result obtained from the prolongation described here. This is procedure (iii) mentioned in 
section 1. 

4.4. Example 1: linear elasticity 

The Lagrangian is 

where 

ujj = ajAj + ajAi 

and indices run from 1 to 3. We let U = ukk, Indices are raised and lowered by 8, and the 
A, are the covariant components of the displacement. 

L" = hUkkJmi + 2PO". 

The criterion for invariance simplifies due to the symmetry of LUk: we only need 

Lch.h + LUk[h,k  -ch,k(Ah,u 4- Au,h) -< ' .ukl  = 0. (23) 

We now examine a few natural groups and list the corresponding conservation laws. In 
all these examples, except dilatations, = 0. 
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The generator is amam, where the am are constants, and 

787 1 

Translations. 

Pi = amTm, (24) 

with 

T" =ha (f.8"" - gmi + Am,i )  + 2p (~uJkuj#" - uamcrUi + o h i A m , h ) .  

We recover the Eshelby tensor 

Rotations. Here, the generator is W h k ( X k J h i  -xhsk' )a i ,  where Oh* are constants satisfying 
&hk = --wfih and Q P' = 0, with 

pi = f ~ ~ ~ ( ( ~ h ~ k ~  -,&hi) + ( A ~ L "  - A ~ L ~ ~ ) ) .  (25) 

These conservation laws are the sum of two conservation laws obtained by Olver (1984, 
1986, 1988) corresponding to the independent rotation of the space coordinates and the 
displacement vector. In a physical rotation of an elastic body, the displacement does not 
remain constant in direction, but rather moves with the body-this is, in fact, a consequence 
of its vectorial nature. If it did not, the body would undergo some additional stress. It is 
therefore normal that we should obtain both terms at once when considering rotations in 
x-space. 

Dilatations. 5 = x i a t  +aAjaA, .  The criterion gives 01 = $. We now find 

P' LX' + ( f A j  + XhAj,h)Lii. 

All the above conservation laws are, in fact, linear combinations of those obtained by 
Olver (1984a, b, 1986, 1988); note that this paper also contains several class$cation results 
for the symmetries of the Euler equations. 

4.5. Example 2: Manoell's equations 

The Lagrangian is now: L = - F 2 / 4 ,  where 

F2 = F'jFij F . .  - 8 . A .  - 8.4.  
X I - 8  I J 1 

Indices run from 0 to 3. Indices are raised and lowered using the Minkowski tensor q'j 
with signature (-, +, +, +). A short calculation gives L" = Fik.  AI are the dependent 
variables. If we consider the generator P'ai, the condition for this to generate a variational 
symmetry has a remarkable form: since here LYk = -Lku,  we find 

L t h , h  + LYk[-th,k(&,h - Ah.o)l = 0 

or, more simply, 

where 
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is a symmetrict traceless tensor known in the physics literature as the symmetric Maxwell 
energy-momentum tensor. Using symmetry, our condition further reduces to 

Bhk($h,k  + $k,h)  = 0. (27) 
It is therefore satisfied whenever 

Lev = w v  (28) 
where 7 = qab dry 8 dxh,  i.e. whenever $ generates a group of conformal transformations. 
This very simple derivation is made possible by the present formalism. For earlier related 
results via more complicated techniques, see Bateman (1909), Bessel-Hagen (1921) and 
Cunningham (1909). 

Here again, the vectorial nature of the dependent variable has a direct physical meaning: 
under a Lorentz transformation, the electric and magnetic fields are scrambled and only the 
electromagnetic tensor has a geometric meaning as a 2-form (or a twice-covariant tensor). 

Let us now examine the conservation laws associated with the generators of the 
conformal group. Many of these can be found in the physics literature, as we point out, but 
their derivation has not always been integrated into the common framework of computations 
of symmetries. The present derivation seems to give the results in their simplest form. The 
reader is invited to compare them with Bateman (1909), Bessel-Hagen (1921), Cunningham 
(1909) and Fushchich et al (1993). Note also that Pohjanpelto (1989) has obtained a 
classification of symmetries, starting directly from Maxwell's equations. 

Translations. The generator is 5 = akak, where ak are constants. The corresponding 
conservation law is Di Pi = 0 with 

Pi = = ' T i k  

where 
pk = -I 4 F  2 6, i -k FiUA.,k = B i t  - FihahAk. 

These tensors have a physical interpretation: Tik is known as the non-symmetric 
canonical energy-momentum tensor, and Bik is the symmetric Maxwell tensor encountered 
earlier. Their components are related to the Poynting vector, but, as we noted earlier, 
three-dimensional language would be inadequate in this situation. 

Rotations. 
Note that D&' = 0. The corresponding conservation law is Dip' = 0 with 

The generator is $ = f U h k ( v h ' X k  - rlk'xh)), where, again, Uhk are constants. 

Pi = -$Uhk((TkiXh - Th'xk)  + (AhLki  - AkLh')]  

= fUhkMhk'. 

aiMhki = 0 Mhki  = Lhki + p i ,  

Further, 
Mhki = Jhk' - ai[F"(xhAk - x k A h ) ] ,  

Integrating the identity aiMhki  and using the divergence theorem gives the conservation of 
angular momentum. Shki represents a spin, Lhki an orbital angular momentum and Jhk i  a 
total angular momentum. Mhk' is the total angular momentum (see Rohrlich (1965) for a 
physical interpretation and applications). 

t That is. e h k  = eXh 



The prolongation formula for tensorfields 

Dilarationr. The generator is 6 = x'a;  
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P' = LX' - (AJ + XhAJ,h)Fji 

Conformal transformations. 
constants. The corresponding conservation law is D i p i  = 0 with 

The generator is 613, = ai(2x'xj - xkxkq'J)aj, where a' are 

P' = Le' - [Eh(Aa,h - & , a )  - a ~ ( 6 ~ A h ) ] F ~ ' .  

Recall that we proved in one blow at the beginning of this section that all of these 
generate variational symmetries. 

5. Concluding remark 

The prolongation of group actions, in the last twenty years, has been a powerful tool for 
studying symmetries of differential equations and variational principles. Simplified accounts 
of Noether's theorems (Edelen 1969, Gel'fand and Fomin 1963, Hill 1951, Logan 1977 and 
Schmutzer 1968), although useful in obtaining familiar conservation laws of field theories, 
have neither the power nor the computational ease of use of the Lie-Noether procedure. 
Here we have extended the latter to tensor-valued field variables, treating them not as 
multi-scalars but as tensor fields. Illustrative examples show the simplicity of use of this 
prolongation formula. It should provide the natural tool for studying symmetries of tensor 
field theories. 
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